Learning Goals

Data

1. I can identify categorical and quantitative variables.
2. I can distinguish between a sample and a population.
3. I can distinguish between an observational study and a
randomized experiment.
4. I can understand that not every association implies causation,
and can identify potential confounding variables.
5. I can analyze one categorical variable using tables or graphs.
6. I can analyze two categorical variables using two-way table.
7. I can analyze one quantitative variable using dotplots and
histograms, finding mean and median, and explaining outliers
and skewness.
8. I can use technology to find summary statistics and compute
z-scores, interpret 5-number summary, and use the range and
standard deviation as measures of spread.
9. I can analyze one quantitative variable and one categorical
using boxplots and comparative summary statistics.
10. I can use technology to find correlation and interpret a
correlation.
11. I can use technology to find the regression line for two
quantitative variables and make interpretation and predictions.

Understanding Inference

12. I can distinguish between a population parameter and a
sample statistic.
13. I can construct a confidence interval for a parameter based
on a sample statistic and a margin of error.
14. I can interpret (in context) what a confidence interval says
about a population parameter.
15. I can use technology to create a bootstrap distribution and
construct a 95% confidence interval based on a sample statistic
and the standard error from bootstrap distribution.
16. I can construct a confidence interval based on the percentiles
of a bootstrap distribution.
17. I can specify null and alternative hypotheses based on a
question of interest, defining relevant parameters.
18. I can use technology to create a randomization distribution,
find a p-value, and interpret the p-value.
19. I can make a formal decision in a hypothesis test by
comparing a p-value to a given significance level and state the
conclusion to a hypothesis test in context.
20. I can interpret Type I and Type II errors in hypothesis tests
in context.
21. I can determine the decision for a two-tailed hypothesis test
from an appropriately constructed confidence interval.

Inference with Normal and t-Distributions

22. I can find area in a normal distribution.
23. I can compute a standardized test statistic and compute a
p-value using a normal distribution.
24. I can compute a confidence interval using a normal
distribution.
25. I can use a normal distribution to compute a confidence
interval for a population proportion from standard error.
26. I can use a normal distribution to test a hypothesis about a
population proportion from standard error.
27. I can use a t-distribution to compute a confidence interval
for a population mean from standard error.
28. I can use a t-distribution to test a hypothesis about a
population mean from standard error.
29. I can use a normal distribution to compute a confidence
interval for a difference in proportions between two groups from
standard error.
30. I can use a normal distribution to test a hypothesis about a
difference in proportions between two groups from standard
error.
31. I can use a t-distribution to compute a confidence interval for
the difference in means between two groups from standard error.
32. I can use a t-distribution to test a hypothesis about a
difference in means between two groups from standard error.
33. I can use a t-distribution to compute a confidence interval
for a difference in means based on paired data.
34. I can use a t-distribution to test a hypothesis about a
difference in means based on paired data.